Approximation of Polyatomic FPU Lattices by KdV Equations

نویسندگان

  • Jeremy Gaison
  • Shari Moskow
  • J. Douglas Wright
  • Qimin Zhang
چکیده

We consider the evolution of small amplitude, long wavelength initial data by a polyatomic Fermi–Pasta–Ulam lattice differential equation whose material properties vary periodically. Using the methods of homogenization theory, we prove rigorous estimates that show that the solution breaks up into the linear superposition of two appropriately scaled and modulated counterpropagating waves, each of which solves a Korteweg–de Vries equation, plus a small error. The estimates are valid over very long time scales.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asymptotic Stability of N-solitons of the Fpu Lattices

We study stability of N-soliton solutions of the FPU lattice equation. Solitary wave solutions of FPU cannot be characterized as a critical point of conservation laws due to the lack of infinitesimal invariance in the spatial variable. In place of standard variational arguments for Hamiltonian systems, we use an exponential stability property of the linearized FPU equation in a weighted space w...

متن کامل

Coherent Motions in the Fermi-Pasta-Ulam Model

1. Models of coupled oscillators 2. Two main classes (a) Models with on-site potentials; e.g. Frenkel-Kontorova or discrete NLS (b) Models with only nearest neighbor coupling; e.g. FPU type models 3. Focus on: (a) localized oscillations (b) traveling waves 4. Numerical experiments of Kruskal and Zabusky and the discovery of solitons. 5. The formal approximation of the FPU model by the KdV equat...

متن کامل

Long-time stability of small FPU solitary waves

Small-amplitude waves in the Fermi-Pasta-Ulam (FPU) lattice with weakly anharmonic interaction potentials are described by the generalized Korteweg-de Vries (KdV) equation. Justification of the small-amplitude approximation is usually performed on the time scale, for which dynamics of the KdV equation is defined. We show how to extend justification analysis on longer time intervals provided dyn...

متن کامل

Ultrasonic Kink-Solitons in Fermi-Pasta-Ulam Chains

– We use the sharp pulse method to perform numerical experiments aimed at exciting moving high energy strongly localized kink-solitons in the Fermi-Pasta-Ulam chain of anharmonic oscillators. An approximate analytical expression of the kink-soliton is derived. This is compatible with the fact that these objects move with ultrasonic velocities, proportional to stiffness. For low excitation energ...

متن کامل

On Metastability in FPU

We present an analytical study of the Fermi–Pasta–Ulam (FPU) α– model with periodic boundary conditions. We analyze the dynamics corresponding to initial data with some low frequency Fourier modes excited. We show that, correspondignly, a pair of KdV equations constitute the resonant normal form of the system. We also use such a normal form in order to prove the existence of a metastability phe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Multiscale Modeling & Simulation

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2014